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Abstract 

Erosion risk assessment via models is a critical tool for soil erosion mitigation planning, 

applicable both at local scales for specific control measures and at larger scales for identifying 

erosion hotspots. This study examines the effects of up- and down-scaling on soil erosion risk 

models by analysing datasets of varying scales and input data accuracy, focusing on the 

Universal Soil Loss Equation (USLE) and its derivatives. Specifically, we assess the rainfall 

erosivity factor (R-factor) and the soil erodibility factor (K-factor) within the Hydrological 

Open Air Laboratory (HOAL) Petzenkirchen catchment in Austria, utilising datasets ranging 

from European to national and local scales. The methodology involves using long-term 

precipitation and temperature data, along with soil characteristics from the HOAL catchment. 

The USLE model, which calculates mean annual soil erosion, incorporates various 

environmental and management factors. For R-factor computation, both national and local 

datasets were analysed using multiple kinetic energy-intensity (KE-I) equations and direct 

measurements from a disdrometer were employed for validation purposes. Results indicate that 

R-factor estimates from national and local datasets are generally comparable, with differences 

arising from the use of different KE-I equations and spatial interpolation methods. The national 

dataset, derived from 171 rainfall stations and SPARTACUS grid data, provided an R-factor of 

78.72 N h-1 yr-1. Local dataset calculations showed minor differences, with the van Dijk et al. 

(2002) equation yielding an R-factor of 76.37 N h-1 yr-1. Direct disdrometer measurements 

produced an R-factor of 76.68 N h-1 yr-1, aligning well with both national and local estimates 

but highlighting the need for a longer dataset for reliable results. For the K-factor, substantial 

variability was observed across different methods and scales. The LUCAS dataset was used for 

large-scale analysis, while a detailed soil sample network within the HOAL catchment provided 

local data. The Williams et al. (1983) method resulted in the highest K-factor for the large-scale 

dataset (0.07), whereas the Wischmeier and Smith (1978) method yielded the highest average 

value (0.082) for the local dataset. The study underscores the importance of accurate in-situ soil 

data and the limitations of interpolation methods, emphasizing that precise soil texture 

information is crucial for reliable K-factor estimation. Large-scale datasets are useful for 

identifying general erosion risk hotspots. However, for effective erosion mitigation planning 

and detailed measure design, validation with local high-accuracy data is essential. The study 

advocates for a standardised approach to up- and down-scaling in soil erosion modelling to 

ensure consistency and comparability of model outcomes. Advanced interpolation techniques 

and the integration of multiple data sources, including remote sensing and radar data, can 

enhance the precision of soil erosion risk assessments, thereby supporting more effective soil 

conservation strategies. 
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1 Introduction  
 

Erosion risk assessment via models is a valuable tool for soil erosion mitigation planning at 

both local and larger scales. Locally, these models can guide the implementation of specific 

control measures, while at larger scales, they can identify erosion hotspots. However, as 

highlighted in our survey of soil erosion model use in Europe (Schmaltz et al., 2024), there is 

significant variability in parameterisation and methodology across different modelling 

approaches, even when the same model is employed. This variability hampers the comparability 

of model outcomes and can potentially distort erosion mitigation planning and implementation. 

The accuracy and quality of model input data are critical for the validity of model outcomes. 

Dataset quality is often linked to the modelling scale, with large-scale modelling efforts 

requiring substantial data that may not always be available in appropriate quality or accuracy 

across the entire modelled area, such as at a national level. 

The aim of this report is to enhance our understanding of the up- and down-scaling effects on 

soil erosion risk models. We conduct modelling scenarios using datasets of varying scales and 

input data accuracy, ranging from data available at the European scale to data available at 

national and catchment scales. To illustrate the impact of changing datasets and methods, we 

analyse two specific modelling parameters within the Universal Soil Loss Equation (USLE) 

(Wischmeier and Smith, 1978) and its derivatives (Renard et al., 1997; USDA-ARS, 2013): the 

rainfall erosivity factor (R-factor) and the soil erodibility factor (K-factor), within a specific 

catchment in Austria. These factors were chosen due to their physical nature and the potential 

for validation. Both factors require spatially distributed data at larger scales, which can 

introduce uncertainty in their estimation due to the limited availability of highly accurate data 

at large spatial scales. 

 

2 Methodology 
 

The Hydrological Open Air Laboratory (HOAL) Petzenkirchen, in Lower Austria was chosen 

as the study site (Blöschl et al., 2016) to ensure the availability of datasets at various scales. 

The catchment size is 65.8 ha and the long-term (1990–2014) mean annual precipitation and 

temperature at the site are 823 mm and 9.5°C. The elevation ranges from 268 to 323 m a.s.l. 

with a mean slope of 8%. The soil type of the area is mainly cambisol and the majority of the 

catchment area is used for arable land.  

 

The USLE model (and its derivatives) is the most widely used model for soil erosion risk 

assessment and includes several factors to estimate soil erosion. It estimates the mean annual 

soil erosion, A (in t ha-1 yr-1) over a predefined period considering different environmental and 

agricultural management factors: 

A = R ∗ K ∗ L ∗ S ∗ C ∗ P           Eq. 1 



Deliverable WP4-D5 Stepwise tutorial for USLE approach with 

different dataset qualities and scales 

   

 
This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement N° 862695 6 

where R is the erosivity factor and K is the erodibility factor. L and S are slope length and 

steepness factors, respectively, which depict a combined topographic LS-factor. C is the cover 

management factor and P is a protection factor in case soil protection measures are set.  

 

Computation of rainfall erosivity 

 

Rainfall erosivity (R-factor) is a significant parameter influencing soil erosion, as the 

detachment and mobilisation of soil particles is initiated by raindrops. Rainfall erosivity 

depends on the rainfall kinetic energy and rainfall intensity and can be highly variable in time 

and space depending on the rainfall characteristics of a specific area.  

R-factor calculation was done according to the same method as described in Johannsen et al. 

(2022), who updated the R-factor estimation of Austria. Here the event erosivity, EI30 (N h-1), 

was calculated as by the standard definition of the USLE (Wischmeier and Smith, 1978): 

𝐸𝐼30 = (∑𝑒𝑟

𝑘

r=1

𝑣𝑟) I30 Eq. 2 

where 𝑒𝑟 is the kinetic energy (kJ m-2 mm-1), 𝑣𝑟 is the rainfall volume (mm) in period r and 𝐼30 

is the maximum rainfall intensity (mm h-1) within 30 minutes of the event.  

The R-factor (N h-1 yr-1) is the average of annual erosive events over a certain number of years: 

R =
1

𝑛
∑∑(𝐸𝐼30)𝑘

mj

k=1

n

j=1

 Eq. 3 

where n is the number of years in the time series, mj is the number of erosive events within a 

year j and EI30 is the rainfall erosivity of event k.  

Kinetic energy of rainfall can be calculated when the raindrop size and velocity is known. This 

information is often not known and thus kinetic energy-intensity (KE-I) equations have been 

developed. These are empirical relationships that have been established through site-specific 

rainfall measurements and enables the estimation of kinetic energy by knowing the rainfall 

intensity only. A large variation in KE-I equations (linear, exponential, logarithmic and power 

law) exists due to the use of different measurement methods, sampling limitations and 

variations in geographical and meteorological conditions. The KE-I equations are thus often 

only valid under the conditions on which they were calibrated (Johannsen et al., 2020b). In the 

study by Johannsen et al. (2022), the KE-I equation by van Dijk et al. (2002) was used, as this 

equation was developed as a universally predictive equation based on data from scientific 

literature. It has also been shown to fit the best with measured kinetic energy in the HOAL 

catchment (Johannsen et al., 2020b). Other commonly used KE-I equations are the ones used 

in the USLE, RUSLE and RUSLE2 by Wischmeier and Smith (1978), Brown & Foster (1987) 

and McGregor et al. (1995), respectively.  

For analysis of the effect of using different KE-I equations, the local dataset was calculated 

with several KE-I equations (Table 1).  
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Table 1. KE-I equations of different studies.  

Equation number KE-I equation Reference 

1 𝐾𝐸 = 28.3(1 − 0.52𝑒−0.042𝐼) van Dijk et al. (2002) 

2 𝐾𝐸 = 29(1 − 0.72𝑒−0.05𝐼) Brown & Foster (1987) 

3 𝐾𝐸 = 29(1 − 0.72𝑒−0.082𝐼) McGregor et al. (1995) 

4 𝐾𝐸 = 11.9 + 8.73 log 𝐼, for I ≤ 76 mm h-1 

𝐾𝐸 = 28.3, for I > 76 mm h-1 

Wischmeier & Smith 

(1978) 

 

Large-scale dataset 

The national dataset is taken from the paper by Johannsen et al. (2022), who updated the 

Austrian R-factor estimation using 171 rainfall stations and mapped the whole country by linear 

regression and use of the SPARTACUS daily precipitation and temperature 1 km2 grid cell 

datasets (Hiebl and Frei, 2018, 2016). The R-factor from the national dataset was based on R-

factors calculated from individual rain gauge stations across Austria (between 1995-2015), 

which were then used to make a linear regression of R-factors and mean annual rainfall for the 

whole of Austria. This regression was then applied to the gridded SPARTACUS annual rainfall 

dataset, thereby creating an R-factor for each 1 km2 grid cell, to spatially estimate R-factors 

also in those areas without a rainfall measurement station. For this study, the R-factor of each 

of the three SPARTACUS cells covering the HOAL catchment (Figure 1) were averaged 

together to give the combined R-factor for the catchment.  

For further information we refer to the paper by Johannsen et al. (2022). 

 

 

Figure 1. The three 1 km2 SPARTACUS cells (Cell 1 to 3) of mapped R-factors by 

Johannsen et al. (2022) covering the HOAL catchment (green outline) and the three rain 

gauges (blue dots) used to compile the full local dataset.  
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Local dataset 

The local dataset consists of 5-min data from three rain gauges situated within or near the 

HOAL catchment (Figure 1). The dataset covers 1995-2015, but had to be combined from three 

rain gauges in order to cover the whole period. The events on days with negative temperatures 

were excluded based on the SPARTACUS temperature dataset (Hiebl and Frei, 2016), but only 

"Cell 2" in HOAL (Figure 1) was used for the temperature correction, as the three cells rarely 

differed in their frost days. 

The same calculation method of event erosivity and R-factor calculation (as described above) 

was performed for the local dataset as for the national dataset (without the data correction 

process though). As this local dataset only describes a single site, no spatial interpolation to the 

SPARTACUS cells was done. The local dataset R-factor estimation method thus differs from 

the national dataset on the point of interpolation to a larger scale.  

To test the effect of using different KE-I equations the local dataset was run with several 

different equations (Table 1).   

The use of disdrometer data allows for direct estimation of the EI30 (R-factor) directly based 

on the measured drop size and velocity and intensity, without relying on a KE-I equation for 

calculating kinetic energy and as such should give a directly measured R-factor. A disdrometer 

(PWS100, Campbell Inc.) is situated in the HOAL catchment and provides data in 1-min 

resolution. Unfortunately, the dataset is rather limited and only starts at the very end of the 

1995-2015 time period covered by the other datasets. Available disdrometer data for the years 

2014, 2015 (incomplete year) and 2017 were used for the calculation. Kinetic energy was 

calculated based on the drop size and velocity measured by the disdrometer. The intensity was 

measured directly by the disdrometer. Rainfall events were separated and KE and I were 

summed up for every event. The R-factor was calculated as per Eq. 2 and 3. 

 

Computation of soil erodibility 
 

The soil erodibility (K-factor) reflects the natural ability of topsoil to erode. Soil erodibility 

depends on the specific soil characteristics such as soil texture, organic matter content, rock 

fragments, etc. and thus varies a lot depending on these factors, which are highly spatially 

variant. A spatially explicit estimation of the K-factor is therefore critical in soil erosion 

modelling and soil loss mapping.  

However, the need for accurate, spatially distributed soil data makes the K-factor estimation 

difficult at larger scales, due to data availability limitations, differing spatial resolutions or 

degree of needed data content for the specific parameters within the K-factor calculation. 

Furthermore, several calculation methods exist, which use different input data and empirical 

relationships for calculation. This may lead to a high uncertainty in the K-factor estimation at 

regional/national level, thereby also affecting possible soil erosion estimates.  
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Table 2. K-factor equations of different studies.  

Eq. 

number 

K-factor equation Reference 

5 𝐾 

=
((2.1𝑀1.14(10−4)(12 − 𝑂𝑀) + (3.25(𝑏 − 2)) + (2.5(𝑐 − 3))

100
 

 

where M is the particle size parameter, OM is soil organic matter, 

b is the soil structure code used in soil classification and c is the 

profile permeability class. 

 

Wischmeier 

and Smith 

(1978) 

6 

𝐾 =

7.594

(

 
 
0.0034 +

0.0405 exp (−
1
2 (𝑙𝑜𝑔10𝐷𝐺 + 1.659))

0.71012

)

 
 

10
 

 

where DG is diameter of the grain, i.e. soil particle. 

 

Römkens et 

al. (1997) 

7 
𝐾1 = {

2.77 ∗ 10−5𝑓𝑠𝑖𝑣𝑓𝑠(100 − 𝐶)
1.14, 𝑖𝑓 𝑓𝑠𝑖𝑣𝑓𝑠 < 70 %

1.75 ∗ 10−5𝑓𝑠𝑖𝑣𝑓𝑠(100 − 𝐶)
1.14 + 0.0024𝑓𝑠𝑖𝑣𝑓𝑠 + 0.16

 

 

where 𝑓𝑠𝑖𝑣𝑓𝑠 is the fraction of silt and very fine sand. 

 

𝐾2 = {
10 − 𝑂𝑀

10
, 𝑖𝑓 𝑂𝑀 > 4 %

0.8, 𝑒𝑙𝑠𝑒
 

 

where OM is the organic matter content. 

 

𝐾3

= {
𝐾1𝐾2 + 0.043(𝑠 − 2) + 0.033(𝑝 − 3), 𝑖𝑓 𝐾1𝐾2 > 0.2

0.34𝐾1𝐾2 + 1.79(𝐾1𝐾2)2 + 0.24𝐾1𝐾2𝑠 + 0.033(𝑝 − 3)
 

         

where s and p denote stoniness and soil permeability class 

indicators. 

 

𝐾4 = {

𝐾3

10
, 𝑖𝑓 𝑓𝑠𝑡𝑜𝑛𝑒 < 1.5

𝐾3(1.1 exp(0.024𝑓𝑠𝑡𝑜𝑛𝑒) − 0.06)

10

 

 

where 𝑓𝑠𝑡𝑜𝑛𝑒 is the fraction of surface stones. 

 

Nomograph 

(according 

to 

Auerswald 

et al., 2021) 
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8 
𝐾 = (0.2 + 0.3 exp(0.0256𝑆 (1 −

𝑆𝑖

100
)) (

𝑆𝑖

𝐶 + 𝑆𝑖
)
0.3

(1

−
0.25𝐶

(𝐶 + exp(3.72 − 2.95𝐶))
) (1.0

−
0.7𝑆

(𝑠𝑛 + exp(−5.51 + 22.9𝑆))
) /10  

 

where S, Si and C are sand, silt and clay fractions (%), respectively. 

 

Williams et 

al. (1983) 

9 
𝐾 =

0.0086𝑆𝑖

10
 

 

where Si is the silt content (%). 

 

Strauss et al. 

(2007) 

10 
𝐾 = ((

2.1(𝑆(100 − 𝐶))1.1410−4(12 − 𝑂𝑀))

100
0.1317 

 

Where S and C are sand and clay contents, respectively and OM is 

the organic matter content (all in %). 

  

Wischmeier 

et al. (1971) 

11 
𝐾 = ((0.043𝑝𝐻) + (

0.62

𝑂𝑀
) + (0.0082𝑆) − (0.0062𝐶)) 𝑆𝑖 

where pH is the pH of the topsoil, OM is the organic matter 

content, S, Si and C are percentages of sand, silt and clay 

fractions respectively. 

 

David 

(1988) 

 

Large-scale dataset 

The large-scale dataset employed in this study is the LUCAS dataset, which is also utilised in 

the computation of the K-factor as described by Panagos et al. (2014). For the purposes of this 

study, only LUCAS data points located within Austria and on arable land were selected. The 

LUCAS dataset includes three texture classes (sand, silt, clay), organic matter content and 

information about the topsoil’s pH. Furthermore, stone content and surficial stone coverage 

data were extracted from the EU’s soil database, as documented by King et al. (1994). The K-

factor was computed using the equations referenced in the aforementioned study. If necessary, 

the very fine sand fraction was estimated to be 20% of the sand fraction, following the 

methodology of Panagos et al. (2014). The resulting datasets were spatially interpolated using 

Kriging with the R programming language. The interpolation was performed on a raster with a 

resolution of 25 x 25 metres. Subsequently, the interpolated K-factor values specific to the 

HOAL catchment area were clipped out for further analysis. 

 

Local dataset 

The local dataset is comprised by a soil sample network with a raster resolution of 50 x 50 

metres, which encompasses approximately 60 hectares of the catchment area. The dataset 
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comprises topsoil samples categorised into seven texture classes: fine, medium and coarse sand; 

fine, medium and coarse silt; and clay. Furthermore, the dataset encompasses data on organic 

matter content, topsoil pH and the quantity of coarse material (particles exceeding 2 mm). 

Furthermore, data on the surface coverage of coarse material are available and are 

representative of the predominant soil types within the study area. 

 

3 Results and Discussion 
 

R-factor 

The national R-factor estimation by Johannsen et al. (2022) was used to calculate the averaged 

R-factor of the three cells with mapped annual R-factors covering the HOAL catchment (see 

Fig. 1) and gave an R-factor of 78.72 N h-1 (Table 3).  

 

Table 3. R-factors from the three different datasets and calculated with different KE-I 

equations for the local dataset.  

 R-factor (N h-1 yr-1) 

KE-I eq. National dataset Local dataset 

van Dijk et al. (2002) 78.72 76.37 

Brown & Foster 

(1987) 

- 66.98 

McGregor et al. 

(1995) 

- 74.67 

Wischmeier & Smith 

(1978) 

- 

78.02 

 

The difference in R-factor between the national dataset and the local dataset is only 2.35 N h-1 

yr-1, when using the same R-factor calculation method and KE-I equation. As the data correction 

process and the spatial interpolation step were not done for the local R-factor calculation, the 

calculation methods cannot be said to be exactly comparable. However, the local scale dataset 

can rather be seen as an effort to validate the R-factor estimation based on the national dataset.  

Both the local and the national dataset are based on rain gauge measurements. These are single 

point data sources, which are often unevenly distributed in space and themselves subject to 

measurement inaccuracies. To extend the R-factor estimations over a larger region, 

interpolation methods are used. Several such spatial interpolation methods exist, each with their 

own advantages and drawbacks, which have to be kept in mind.  

Other possible large-scale datasets could be the use of radar rainfall data. Such datasets have 

already been used e.g. in Germany to produce a new R-factor estimation for the whole country 

(Auerswald et al., 2019). As radar provides a contiguous data source, there is no need for 

interpolation, which eliminates one source of uncertainty. Recently, also remote sensing 

developments have led to satellite data being used to estimate the R-factor over large scales e.g. 

in India (Das et al., 2022).  
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Like any other measurements radar and satellite data have their own uncertainties and 

performance limitations. Therefore, recent products tend to combine multiple data sources to 

obtain high-precision rainfall data (e.g. the INCA dataset in Austria), e.g. by correcting the 

errors or data gaps from radar or satellite data with rain gauge data. Given the inherent 

uncertainties of each measurement method and differences in spatial and temporal resolution, 

the combination of multiple rainfall datasets is a challenging task (Wang et al., 2024).  

From Table 3, it can be seen that some differences in the final R-factor occurs as a result of 

using different KE-I equations, although the differences are not that great for three of the KE-I 

equations. However, the Brown & Foster (1987) equation underestimates the R-factor 

compared to the others. This is a well-known phenomenon and its use has been discouraged 

(Johannsen et al., 2020b; Nearing et al., 2017), however it is still very much being used.  

The use of disdrometer data could be used for R-factor validation purposes and to eliminate the 

use of KE-I equations. Disdrometers can directly measure the drop size and velocity of rainfall 

drops, whereby the kinetic energy can be directly calculated and the use of empirical KE-I 

equations can be avoided. The direct measurement of erosive events by a disdrometer within 

the HOAL catchment resulted in the calculation of an R-factor of 76.68 N h-1 yr-1. This R-factor 

actually fits well with the national and local scale R-factors. Due to the limited dataset the result 

is however very uncertain. A longer time period of recorded disdrometer data is needed to 

produce a reliable R-factor. Although the use of empirical KE-I equations can be avoided by 

direct kinetic energy measurement with a disdrometer, as with any measurement device, 

disdrometers also have their own measurement uncertainties (Johannsen et al., 2020a) and the 

results have to be analysed and interpreted with this in mind.  

 

K-factor 

The K-factor methods produce significant differences for both dataset scales, with variations of 

approximately +/- 0.035 of the K-factor. Notably, Williams et al. (1983) reported the highest 

K-factor of 0.07 for the large-scale dataset. In contrast, the method by Wischmeier and Smith 

(1978) exhibited the highest average value of 0.082 for the local dataset. On the other hand, the 

method proposed by David (1988) resulted in the lowest value for the large-scale dataset at 

0.026, while the Roemkens et al. (1997) method recorded the lowest average K-factor for the 

local dataset (Figure 2). 
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Figure 2. K-factors with applied methods and the large-scale dataset for the HOAL catchment. 

At the local scale (Figure 3), various methods demonstrated similar tendencies in K-factor 

distribution, with higher values observed in thalweg situations and lower values at hilltops. 

However, there is considerable variability among the methods, with certain spatial outliers, such 

as the David (1988) method, exhibiting high variability. When comparing the two datasets, 

methods showed increased variability, particularly when the computation heavily relied on very 

fine sand, as seen in the methods by Wischmeier and Smith (1978) and Wischmeier et al. 

(1971). 
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Figure 3. K-factors with applied methods and the local dataset for the HOAL catchment. 

The importance of in-situ information about soil textural composition becomes evident, as 

accurate soil data are crucial for reliable K-factor estimation. The method by Strauss et al. 

(2007), which exclusively includes silt content, also emphasises the need for precise in-situ 

information. Meanwhile, methods by Roemkens et al. (1997) and the Nomograph methods 

appear to be less sensitive to the scale dependencies of the dataset. 

While interpolation methods can be a temporary solution in the absence of data, measured data 

remains critical for accuracy. Advanced interpolation techniques, including statistical methods 
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or those employing artificial intelligence, could potentially enhance interpolation results in 

regions with data scarcity. Ensuring data accuracy is fundamental to achieving more precise K-

factor estimates on a catchment scale, thus emphasizing the necessity to consider very fine sand 

fractions in relevant methods. 

 

4 Conclusions 
 

The study highlights the challenges and implications of scaling effects on soil erosion risk 

models, emphasizing the importance of parameterisation and dataset accuracy in the Universal 

Soil Loss Equation (USLE) application. By comparing the rainfall erosivity factor (R-factor) 

and soil erodibility factor (K-factor) using both national and local datasets within the HOAL 

catchment in Austria, this research underscores the complexities involved in soil erosion 

modelling at different scales. 

The methodology employed utilised the Hydrological Open Air Laboratory (HOAL) 

Petzenkirchen as the study site to leverage datasets available at various scales. For the R-factor, 

data from national datasets were interpolated from rain gauge stations across Austria, while 

local datasets were derived from three rain gauges within the HOAL catchment. The study also 

incorporated direct measurements from a disdrometer to validate R-factor calculations. The 

results revealed that despite methodological differences, R-factor estimates from national and 

local datasets were comparable, although certain empirical equations, like the one proposed by 

Brown & Foster (1987), were found to underestimate the R-factor significantly. 

Similarly, for the K-factor, the study employed the LUCAS dataset for large-scale analysis and 

a detailed local soil sample network within the HOAL catchment. The results indicated 

substantial variability in K-factor estimates across different methods and scales, with the 

Williams et al. (1983) method yielding the highest K-factor for the large-scale dataset and the 

Wischmeier and Smith (1978) method for the local dataset. The spatial variability of K-factor 

estimates highlighted the importance of accurate in-situ soil data and the limitations of 

interpolation methods in the absence of detailed soil texture information. 

We conclude that large-scale datasets can effectively identify general erosion risk hotspots, but 

for precise planning and implementation of erosion mitigation measures, validation with local, 

high-accuracy data is essential. The need for a standardised approach to up- and down-scaling 

in soil erosion modelling is evident to ensure consistency and comparability of model outcomes. 

Advanced interpolation techniques and the integration of multiple data sources, including 

remote sensing and radar data, may enhance the precision of soil erosion risk assessments, thus 

supporting more effective soil conservation strategies. 
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